\n', n_m) fprintf ('Node, BC_Flag, Coordinates \n') for j = 1:n_m ; % list nodes fprintf ('%g %g %g %g %g \n', j, P(j), x(j), y(j), z(j)) ; end % for j DOF fprintf ('\n') % end get_mesh_nodes function list_save_beam_displacements (n_g, n_m, T) fprintf ('\n') ; fprintf('Node Y_displacement Z_rotation at %g nodes \n', n_m) T_matrix = reshape (T, n_g, n_m)' ; % pretty shape % save results (displacements) to MODEL file: node_results.tmp fid = fopen('node_results.tmp', 'w') ; % open for writing for j = 1:n_m ; % node loop, save displ fprintf (fid, '%g %g \n', T_matrix (j, 1:n_g)) ; % to file fprintf ('%g %g %g \n', j, T_matrix (j, 1:n_g)) ; % to screen end % for j DOF % end list_save_beam_displacements (n_g, n_m, T) function list_save_displacements_results (n_g, n_m, T) fprintf('Computed nodal displacements at %g nodes \n', n_m) fprintf('Node DOF_1 DOF_2 DOF_3 DOF_4 DOF_5 DOF_6 \n') T_matrix = reshape (T, n_g, n_m)' ; % pretty shape % save results (displacements) to MODEL file: node_results.tmp fid = fopen('node_results.tmp', 'w') ; % open for writing for j = 1:n_m ; % save displacements if ( n_g == 1 ) fprintf (fid, '%g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g \n', j, T_matrix (j, 1:n_g)) ; elseif ( n_g == 2 ) fprintf (fid, '%g %g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g %g \n', j, T_matrix (j, 1:n_g)) ; elseif ( n_g == 3 ) fprintf (fid, '%g %g %g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g %g %g \n', j, T_matrix (j, 1:n_g)) ; elseif ( n_g == 4 ) fprintf (fid, '%g %g %g %g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g %g %g %g \n', j, T_matrix (j, 1:n_g)) ; elseif ( n_g == 5 ) fprintf (fid, '%g %g %g %g %g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g %g %g %g %g \n', j, T_matrix (j, 1:n_g)) ; elseif ( n_g == 6 ) fprintf (fid, '%g %g %g %g %g %g \n', T_matrix (j, 1:n_g)) ; fprintf ('%g %g %g %g %g %g %g \n', j, T_matrix (j, 1:n_g)) ; else error('reformat list_save_displacements_results for n_g > 6.') It features a powerful, interactive and easy interface. There are no limitations regarding the geometry of the structure, materials or loads, since the program can handle any arbitrary 2D truss structure under linear static and non-linear loads. © 2020 DOWNLOAD.COM, A RED VENTURES COMPANY. ~ 2 | P a g e ABSTRACT: The purpose of this term paper is to study about the basics of truss and its analysis and calculation of reactions and internal forces of tension or compression in truss members of statically determinate 2D trusses with arbitrary number of … Tips: 1. We assume elastic linear 2D TRUSS Calculations for Design and Analysis in SAP2000. J K t � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � gd , T p q � � � � � � � � = n p r � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � gd � � � � N P Q i j l m n � � D � � � 1 j � � _ | � � � � � � � � � � � � � � � � � � � � � � � � � � � gd�A2 gd�?� gd gd � D � � � � � � � � X&. By joining Download.com, you agree to our Terms of Use and acknowledge the data practices in our Privacy Agreement. Features -Build truss geometry by adding nodes and members graphically. � Elem, Type, Connectivity_List 1 1 1 3 2 1 3 6 3 1 1 2 4 1 2 3 5 1 1 4 6 1 3 4 7 1 4 6 8 1 3 5 9 1 5 6 10 1 2 4 11 1 4 5 Maximum element type number = 1 Read 3 essential boundary condition sets. n Solve. Learn truss analysis methods with examples. Its versatile interface as well as its easy customization make it a leader-product in truss analysis. Free online structural analysis software for PC, Android and iPad Computes the static deflections, reactions, internal element forces, natural frequencies, mode shapes and modal participation factors of two-and three- dimensional elastic structures using direct stiffness and mass assembly. Introduction A two bay symmetrical truss with cross diagonals in each bay is loaded at the center bottom node with a vwertical force. 2 G \ q � � � � � � � � � � � � � � � � � � � � � � � � � � � � gd gd $a$gdEO� $a$gd �� �� �� � � � � � � * @ I R [ \ s � � � � � � % . Analysis of truss by the methods of joints and by the methods of section is explained in the article. Zero that column and row. I tried using the "Release", but I am not understanding how that works. The structure can be drawn directly using the versatile featured user interface. 2D TRUSS Calculations for Design and Analysis in SAP2000. All type of boundary conditions (fixed, rollers, etc.) number) n_u = size(msh_load_pt, 1) ; % number of point sources if ( n_u < 1 ) ; % missing data error ('No load_pt data in msh_load_pt.tmp') end % if user error fprintf ('Read %g point sources. Manage basic bio informatics analysis and data combined with graphical viewing. A truss element’s axial spring stiffness is define as k = (Area x Modulus of Elasticity) / Length. \n', n_c) fprintf ('Read %g essential boundary condition sets. The system calulates the axial forces, the displacements of the joints, and the deformation of the elements of the structure. Try hold the "Shift" key while placing members and loads. MATLAB Code for 2D Truss Analysis using the Stiffness Method (Continued) Calculation of Local and Global Element Stiffness Matrices StiffnessMethod Page 9 Support at node 1 settles down by 25mm. 2D Truss Analysis - ANALYSIS: Use of highly flexible, general, finite element method Static analysis of 2D trusses Unlimited number of Nodes and Bars All type of boundary conditions (fixed, rollers, etc. Solves simple 2-D trusses using Method of Joints -> Check out the new Truss Solver 2. \n', N) end % if likely user error % end unpack_pt_flags References J.L. Generate chemical structure drawing with multiple features. Try it and start saving time and money! A Meek, Matrix Structural Analysis, McGraw-Hill, 1971. Thought you might be interested in seeing it – if so, drop me a line. Download 2D Truss Analysis. A superb tool for ensuring that proper angles and loads have been considered. D.L= 10K, L.L= 20K, FY = 36KSI, FY=58KSI. Node, BC_Flag, Coordinates 1 11 0 0 0 2 0 0 10 0 3 0 10 0 0 4 0 10 10 0 5 0 20 10 0 6 1 20 0 0 Read 11 elements. EBC = value_EBC (j) ; % recover EBC value C (:) = C (:) - EBC * S (:, j) ; % carry known column to RHS S (:, j) = 0 ; S (j, :) = 0 ; % clear, restore symmetry S (j, j) = 1 ; C (j) = EBC ; % insert identity into row end % if EBC for this DOF end % for over all j-th DOF % end enforce_essential_BC (EBC_flag, EBC_value, S, C) function [a, b, c, center, two_A] = form_T3_geom_constants (x, y, e_nodes) % Planar 3 node triangle geometry: H_i (x,y) = (a_i + b_i*x + c_i*y)/two_a % define nodal coordinates, ccw: i, j, k x_e = x(e_nodes) ; y_e = y(e_nodes) ; % coord at el nodes x_i = x_e(1) ; x_j = x_e(2) ; x_k = x_e(3) ; % change notation y_i = y_e(1) ; y_j = y_e(2) ; y_k = y_e(3) ; % change notation % define centroid coordinates (quadrature point) center (1) = (x_i + x_j + x_k)/3 ; center (2) = (y_i + y_j + y_k)/3 ; % geometric parameters: H_i (x,y) = (a_i + b_i*x + c_i*y)/two_a a_i = x_j * y_k - x_k * y_j ; b_i = y_j - y_k ; c_i = x_k - x_j ; a_j = x_k * y_i - x_i * y_k ; b_j = y_k - y_i ; c_j = x_i - x_k ; a_k = x_i * y_j - x_j * y_i ; b_k = y_i - y_j ; c_k = x_j - x_i ; a (1:3) = [a_i, a_j, a_k] ; b (1:3) = [b_i, b_j, b_k] ; c (1:3) = [c_i, c_j, c_k] ; % calculate twice element area two_A = a_i + a_j + a_k ; % = b_j*c_k - b_k*c_j also % end form_T3_geom_constants (x, y, e_nodes) function [C] = get_and_add_point_sources (n_g, n_m, C) load msh_load_pt.tmp ; % node, DOF, value (eq. 2D Truss Analysis is a powerfull application that uses optimized finite elements (bar elements) in order to perform static analysis of trusses. Select a part and press "Delete" to delete it. This free online truss calculator is a truss design tool that generates the axial forces, reactions of completely customisable 2D truss structures or rafters. Translational and rotational spring supports. Is there a tutorial for "Truss analysis"? I am trying to perform simple "2D truss" analysis using the Inventor "Frame analysis". Unlimited number of Nodes and Bars. error ('Error missing file msh_bc_xyz.tmp') end % if error n_s = size (msh_bc_xyz,2) - pre_p - 1 ; % number of space dimensions msh_bc_xyz (:, (pre_p+1))= round (msh_bc_xyz (:, (pre_p+1))); P = msh_bc_xyz (1:n_m, (pre_p+1)) ; % integer Packed BC flag x = msh_bc_xyz (1:n_m, (pre_p+2)) ; % extract x column y (1:n_m, 1) = 0.0 ; z (1:n_m, 1) = 0.0 ; % default to zero if (n_s > 1 ) ; % check 2D or 3D y = msh_bc_xyz (1:n_m, (pre_p+3)) ; % extract y column end % if 2D or 3D if ( n_s == 3 ) ; % check 3D z = msh_bc_xyz (1:n_m, (pre_p+4)) ; % extract z column end % if 3D %b if ( pre_p ~= 1 ) % not given node number, sequential data fprintf ('Read %g nodes. Problem Description Determine the nodal deflections, reaction forces, and stress for the truss system shown below (E … The dynamic modes of the structure are automatically calculated and the corresponding modal shapes are represented graphically. The units can be SI or US. IT is pinned at the left bottom node and supported by a horizontal roller (no vertical displacement) at the lower right node. Solves simple 2-D trusses using Method of Joints -> Check out the new Truss Solver 2. Analysis features. ��ࡱ� > �� ���� 2D Truss Analysis 2D Truss Analysis is a powerfull application which uses optimized finite elements (bar elements) in order to perform static analysis of trusses. Analysis of truss by the methods of joints and by the methods of section is explained in the article. 1 2 3 4 % stiffness s_L = [ 1, 0, -1, 0 ; 0, 0, 0, 0 ; -1, 0, 1, 0 ; 0, 0, 0, 0 ] * E * A / L_e ; % Map line load to node forces ONLY if ( any (Line_e) ) ; % then form forcing vector fprintf ('WARNING: line loads not yet active. Download 2D Truss Analysis for free. SW Truss is a finite element analysis app for the analysis of statically determinate and indeterminate plane trusses. The user can also import standard steel sections from a complete shape library according to all major codes (AISC, Australian-New Zealand, BS, Chinese, European, Indian, Aluminum etc.) 2D Truss Analysis. Among its capabilities, 2D Frame Analysis - Truss Edition can calculate and graphically illustrate deformations, internal forces, dynamic modes and other analysis results. For analysis, the modulus of elasticity has to be defined under the member material specification. Home » Software » 2D Truss Analysis 2D Truss Analysis is a powerfull application which uses optimized finite elements (bar elements) in order to perform static analysis of trusses. It also draws the deformed structure because of the loads applied to the joints. 2D Truss Analysis script for MATlab. This application uses a highly flexible, general, finite element method for static analysis of trusses. Each bay has a width and height of 10 ft. Validation problem >> Modular_2D_Truss(1) Read 6 nodes. 2D-Truss Analysis. It has a wide range of applications including being used as a wood truss calculator, roof truss calculator, roof rafter calculator, scissor truss calculator or roof framing. More information on truss elements can be found in the SOLIDWORKS help. \n') end % if null solution [S, C] = enforce_essential_BC (EBC_flag, EBC_value, S, C); % COMPUTE SOLUTION & SAVE T = S \ C ; % Compute displacements & rotations list_save_displacements_results (n_g, n_m, T) % OPTIONAL REACTION RECOVERY & SAVE if ( EBC_count > 0 ) ; % reactions exist ? I J � � = n o p q r � � � � � � � � N O P Q h j k l m � � ����������������������̿��������������������嗒����� j3� h|, h|, 5�U h|, 5�h|, h|, 5�j(- h Uj�� h Uj�} h Uj� h Ujh� h h 5�U h 5�j h Uh h 5�h�?� h|, hEO� hEO� hZ^� hEO� hP1 h 4 6 7 D Online Truss Solver. \n', n_e) fprintf ('Elem, Type, Connectivity_List \n') for j = 1:n_e if ( n_n == 1 ) fprintf ('%g %g %g \n', j, el_type(j), nodes(j,:)); elseif ( n_n == 2 ) fprintf ('%g %g %g %g \n', j, el_type(j), nodes(j,:)); elseif ( n_n == 3 ) fprintf ('%g %g %g %g %g \n', j, el_type(j), nodes(j,:)); elseif ( n_n == 4 ) fprintf ('%g %g %g %g %g %g \n', j, el_type(j), nodes(j,:)); elseif ( n_n == 5 ) fprintf ('%g %g %g %g %g %g %g \n', j, el_type(j), nodes(j,:)); elseif ( n_n == 6 ) fprintf ('%g %g %g %g %g %g %g %g \n', j, el_type(j), nodes(j,:)); else fprintf ('%g %g \n', j, el_type(j)); dips( nodes(j,:)); end % if end % for each element fprintf ('Maximum element type number = %g \n \n', n_t) % end get_mesh_elements function [n_m, n_s, P, x, y, z] = get_mesh_nodes (pre_p) ; % MODEL input file controls (for various data generators) if (nargin == 0) % set usual default pre_p = 0 ; % Dummy items before BC_flag % coordinates end % if % READ MESH AND EBC_FLAG INPUT DATA % specific problem data from MODEL data files (sequential) load msh_bc_xyz.tmp ; % bc_flag, x-, y-, z-coords n_m = size (msh_bc_xyz,1) ; % number of nodal points in mesh if ( n_m == 0 ) ; % data missing ! Virus Free \n', ... node, DOF) % EBC_flag (node, DOF) = 1; % try to recover from data error end % if common user error end % for each EBC EBC_count = sum (sum ( EBC_flag > 0 )) ; % check input data if ( EBC_count ~= n_c ) ; % probable user error fprintf ('WARNING: mismatch in bc_flag count & msh_ebc.tmp \n') end % if user error fprintf ('\n') % end get_ebc_values function [rows] = get_element_index (n_g, n_n, e_nodes) % calculate system DOF numbers of element, for gather, scatter rows = zeros (1, n_g*n_n) ; % allow for node = 0 for k = 1:n_n ; % loop over element nodes global_node = round (e_nodes (k)) ; % corresponding sys node for i = 1:n_g ; % loop over DOF at node eq_global = i + n_g * (global_node - 1) ; % sys DOF, if any eq_element = i + n_g * (k - 1) ; % el DOF number if ( eq_global > 0 ) ; % check node=0 trick rows (1, eq_element) = eq_global ; % valid DOF > 0 end % if allow for omitted nodes end % for DOF i % end local DOF loop end % for each element node % end local node loop % end get_element_index function [n_e, n_n, n_t, el_type, nodes] = get_mesh_elements (pre_e) ; % MODEL input file controls (for various data generators) if (nargin == 0) ; % default to no proceeding items in data pre_e = 0 ; % Dummy items before el_type & connectivity end % if load msh_typ_nodes.tmp ; % el_type, connectivity list (3) n_e = size (msh_typ_nodes,1) ; % number of elements if ( n_e == 0 ) ; % data file missing error ('Error missing file msh_typ_nodes.tmp') end % if error n_n = size (msh_typ_nodes,2) - pre_e - 1 ; % nodes per element el_type = round (msh_typ_nodes(:, pre_e+1)); % el type number >= 1 n_t = max(el_type) ; % number of element types nodes (1:n_e, 1:n_n) = msh_typ_nodes (1:n_e, (pre_e+2:pre_e+1+n_n)); fprintf ('Read %g elements. Node DOF Source_value 3 2 -10 Application properties are: Elastity modulus = 30000 Cross-sectional area = 1 Line Load = [ 0 0 ] Node, DOF, Resultant input sources 3 2 -10 2 DOF Totals = 0 -10 Computed nodal displacements at 6 nodes Node DOF_1 DOF_2 DOF_3 DOF_4 DOF_5 DOF_6 1 0 0 2 0.00166667 -0.00091153 3 0.000755136 -0.00440126 4 0.000755136 -0.00289098 5 -0.000156394 -0.00091153 6 0.00151027 0 Recovered 3 Reactions Node, DOF, Value of reaction 1 1 1.77636e-15 1 2 5 6 2 5 2 DOF Totals = 0.0000 10.0000 >> mesh_shrink_plot >> bc_flags_plot >> quiver_resultant_load_mesh(0.25) Using a scale of 0.25 and vector increment of 1 >> deformed_mesh_plot(250) Suggested scale = 227.208 >> quiver_disp_vec_mesh(0.5) Using a scale of 0.5 and vector increment of 1 >> quiver_reaction_vec_mesh(0.25) Using a scale of 0.25 and vector increment of 1 >> truss_el_force_value Modular source on Matlab script The planar truss script is listed first. Thank you. I am trying to perform simple "2D truss" analysis using the Inventor "Frame analysis". A large material library is also available according to almost all concrete, steel, timber, aluminum etc. 2D Truss Analysis is a powerful application that uses advanced limited components (bar components) keeping in mind to perform static investigation of trusses. ANSYS Workbench 17 tutorial for solving a simple 2D Truss problem. Software tool for structural analysis of frames, beams and trusses under static, dynamic, linear and non-linear loads. All rights reserved. Trusses are assumed to be of negligible weight (compared to the loads they carry) Static analysis of trusses with detailed calculation reports. Thank you. View, animate and render 3D chemical structures. Steps to set up a new model: define the node points of the structure by their 2 coordinates (or double click in the pane) define each truss element by its 2 nodes (or drag the mouse bewteen 2 nodes) and its material number. 2D Frame Analysis - Truss Edition is a powerful application that can perform a wide range of calculations on 2Dtrusses. Download 2D Truss Analysis. Supports all major measure units. But I am getting bending stress on the members. � ^ I developed a similar 2D Frame / Truss analysis software as a term project at university which includes graphical representation of input and deflected structure. [EBC_react] = recover_reactions_print_save (n_g, n_d, ... EBC_flag, EBC_row, EBC_col, T); % reaction to EBC end % if EBC exist % POST-PROCESS ELEMENT REACTIONS (MEMBER FORCES) % output_2D_truss_el_reactions (n_e, n_g, n_n, n_q, nodes, x, y, T) % End finite element calculations. Auto Truss - Hand Calcs automatically generates the hand calculations required to solve any statically determinate or indeterminate truss on a two dimensional plane. Watch Videos on How to design a 2D Truss in SAP2000. Cite As Farzad Mohebbi (2020). This app is useful to civil engineers, architects, mechanical engineers and students. material specifications. $ % , . STEPS: Unit = K-ft. New model 2d truss, sloped truss. The analysis is all performed in VBA. Obtain information on chemical elements of the periodic table. \n', n_c) if ( n_c ~= EBC_count ) % then probable user error fprintf ('WARNING, expected %g EBC sets. By using this little web application you can solve any flat truss with a maximum of 30 nodes. A superb tool for ensuring that proper angles and loads have been considered. Shear and P-delta deformations are also considered in the analysis. I developed a similar 2D Frame / Truss analysis software as a term project at university which includes graphical representation of input and deflected structure. It is primarily characterized by saving in material, axial forces, pinned joints and versatility of materials that can be used to build a truss. ; % components E = 15e9 ; % Elastic modulus nu = 0.25 ; % Poisson's ratio % plane stress E_v = E/(1 - nu^2) ; % constant E_e (1, 1) = E_v ; E_e (1, 2) = E_v * nu ; % non-zero term E_e (2, 1) = E_v * nu ; E_e (2, 2) = E_v ; % non-zero term E_e (3, 3) = E_v * (1 - nu) / 2 ; % non-zero term %end set_constant_plane_stress_prop function [t_e, Q_e, E_e] = set_constant_2D_conduction_prop % Manually set constant element properties (Fig 11.9 text) q_e = 0. ; t_e = 1. ; % defaults % case 1 Kx = 8. ; Ky = 8. ; Kxy = 0. ; % thermal conductivity % case 2 kx = 1. ; Ky = 1. ; Kxy = 0. ; % insert E_e = zeros (2, 2) ; % constitutive matrix E_e (1, 1) = Kx ; E_e (1, 2) = Kxy ; % non-zero term E_e (2, 1) = Kxy ; E_e (2, 2) = Ky ; % non-zero term % end set_constant_2D_conduction_prop function [A, E, I, Line_e, Rho] = set_2D_frame_properties (n_n, Option) if ( nargin == 1 ) Option = 1 ; elseif ( nargin == 0 ) n_n = 2 ; Option = 1 ; end % if problem Option number Line_e = zeros (n_n, 1) ; % default line load at nodes switch Option case 1 % Weaver plane frame example X--------\ F_y=-32 K, % E=10000ksi, A=10 in sq 2 (1) 1 \ M_z=-1050 in-K, % I=1000 in^4, L_1=100 in (2)\ at node 1. This application uses a highly flexible, general, finite element method for static analysis of trusses. The Frame4 spreadsheet is set up to allow the analysias of rigid-jointed 2D frames, but it is simple to use it for 2D truss analysis; simply either provide a moment release at each end of every member, or define every member with a second moment of area (I) sufficiently low that all bending moments will be negligible. Tips: 1. Version 3.2: major user interface upgrade. You should use the constant-strain triangular (CST) and/or Isoparametric Formulation. 2D Truss Analysis. D.L= 10K, L.L= 20K, FY = 36KSI, FY=58KSI. ; % then source here % Output node_number, component_number, value node = ceil(j/n_g) ; % node at DOF j j_g = j - (node - 1)*n_g ; % 1 <= j_g <= n_g value = C (j) ; % resultant value fprintf ( fid, '%g %g %g %g \n', node,j_g,value,j);% save fprintf ('%g %g %g \n', node, j_g, value); % print Totals (j_g) = Totals (j_g) + value ; % sum all inputs end % if non-zero for this DOF end % for over all j-th DOF fprintf ('%g DOF Totals = ', n_g) ; disp(Totals) ; % echo totals % end save_resultant_load_vectors (n_g, n_m, C) function [I, E, Rho, Line_e]=set_constant_beam_prop (n_n, Option); if ( nargin == 1 ) Option = 1 ; elseif ( nargin == 0 ) n_n = 2 ; Option = 1 ; end % if problem Option number Line_e = zeros (n_n, 1) ; % default line load at nodes switch Option case 1 % Propped cantilever with uniform load, L, L/4 % Wall reactions: V=37*Line*L/64 M=7*Line*L^2/64 % Roller reaction: R= 43*Line*L/64 % Total vertical load: 5*Line*L/4 % *-----(1)-----*-----(2)-----*--(3)--* EI % Fixed@1 L/2 2 Roller@3 L/4 4 I = 1.0 ; E = 1.0 ; Rho = 0.0 ; Line_e = [1.0; 1.0] ; case 2 % cantilever with uniform load, L I = 1.0 ; E = 1.0 ; Rho = 0.0 ; Line_e = [1.0; 1.0] ; otherwise I = 1.0 ; E = 1.0 ; Rho = 0.0; % default shape & material end % switch % end set_constant_beam_prop; function [t_e, Body_e, E_e] = set_constant_plane_stress_prop ; t_e = 1 ; Body_e (1:2) = 0. ; % defaults % case 1 t_e = 5e-3 ; % thickness Body_e (1:2) = [5e5, 0.] Static analysis of 2D trusses. function Modular_2D_Truss (load_pt) %............................................................. % Classic planar truss for point loads (& line load soon) % XY COORDINATES CLOSED FORM INTEGRALS %............................................................. % pre_e = # of dummy items before el_type & connectivity % pre_p = # of dummy items before BC_flag % coordinates pre_e = 0 ; pre_p = 0 ; % default, consistent with plots if ( nargin == 0 ) ; % check for optional data load_pt = 0 ; % no point source data end % if from argument count % Application and element dependent controls n_g = 2 ; % number of DOF per node (axial_d, transverse_d) n_q = 0 ; % number of quadrature points required n_r = 1 ; % number of rows in B_e matrix % Read mesh input data files [n_m, n_s, P, x, y, z] = get_mesh_nodes (pre_p) ; [n_e, n_n, n_t, el_type, nodes] = get_mesh_elements (pre_e) ; n_d = n_g*n_m ; % system degrees of freedom (DOF) n_i = n_g*n_n ; % number of DOF per element S = zeros (n_d, n_d) ; C = zeros (n_d, 1) ; % initalize sums M = zeros (n_d, n_d) ; ; % initalize sums % Extract EBC flags from packed integer flag P [EBC_flag] = get_ebc_flags (n_g, n_m, P) ; % unpack flags EBC_count = sum( sum ( EBC_flag > 0 ) ) ; % # of EBC % Read EBC values, if any if ( EBC_count > 0 ) ; % need EBC data [EBC_value] = get_ebc_values (n_g, n_m, EBC_flag) ; % read data end % if any EBC data expected % Read point loads or moments, if any, and insert in C if ( load_pt > 0 ) ; % need point loads data [C] = get_and_add_point_sources (n_g, n_m, C); % add point loads end % if any point source expected % ============== ASSUMING HOMOGENOUS PROPERTIES ================= % GENERATE ELEMENT MATRICES AND ASSYMBLE INTO SYSTEM % Assemble n_d by n_d square matrix terms from n_e by n_e for j = 1:n_e ; % loop over elements ====>> ====>> ====>> ====>> S_e = zeros (n_i, n_i) ; M_e = zeros (n_i, n_i) ; % sys arrays C_p = zeros (n_i, 1) ; C_e = zeros (n_i, 1) ; % sys arrays s_L = zeros (n_i, n_i) ; m_L = zeros (n_i, n_i) ; % loc arrays t_L = zeros (n_i, n_i) ; c_L = zeros (n_i, 1) ; % loc arrays e_nodes = nodes (j, 1:n_n) ; % connectivity % SET ELEMENT PROPERTIES & GEOMETRY Option = 1 ; % select analysis case [A, E, Line_e, Rho] = set_2D_truss_properties (n_n, Option) ; %--> find member length and direction cosines dx = x(e_nodes(2)) - x(e_nodes(1)) ; % x length dy = y(e_nodes(2)) - y(e_nodes(1)) ; % y length L_e = sqrt (dx * dx + dy * dy) ; % total length cx = dx / L_e ; cy = dy / L_e ; % direction cosines % ELEMENT CONDUCTION AND INTERNAL SOURCE MATRICES % for q = 1:n_q ; % Loop over quadrature points ----> ----> % Linear axial bar and cubic bending. Watch Videos on How to design a 2D Truss in SAP2000. \n', n_u) fprintf ('Node DOF Source_value \n') for j = 1:n_u ; % non-zero Neumann pts node = msh_load_pt (j, 1) ; % global node number DOF = msh_load_pt (j, 2) ; % local DOF number value = msh_load_pt (j, 3) ; % point source value fprintf ('%g %g %g \n', node, DOF, value) Eq = n_g * (node - 1) + DOF ; % row in system matrix C (Eq) = C (Eq) + value ; % add to system column matrix end % for each EBC fprintf ('\n') % end get_and_add_point_sources (n_g, n_m, C) function [EBC_flag] = get_ebc_flags (n_g, n_m, P) EBC_flag = zeros(n_m, n_g) ; % initialize for k = 1:n_m ; % loop over all nodes if ( P(k) > 0 ) ; % at least one EBC here [flags] = unpack_pt_flags (n_g, k, P(k)) ; % unpacking EBC_flag (k, 1:n_g) = flags (1:n_g) ; % populate array end % if EBC at node k end % for loop over all nodes % end get_ebc_flags function [EBC_value] = get_ebc_values (n_g, n_m, EBC_flag) EBC_count = sum( sum ( EBC_flag > 0 ) ) ; % # of EBC EBC_value = zeros(n_m, n_g) ; % initialize to zero load msh_ebc.tmp ; % node, DOF, value (eq. Determine the force in member 2. 2. Download 2D Truss Analysis for free. �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� {` �� �� bjbj�F�F 4� �, �, �� ] �� �� �� � � � � � � � � � *v *v *v 8 bv vv � � ɖ � nw nw ( �w �w �w �w �w �w H� J� J� J� J� J� J� $ �� h '� ~ n� � �} �w �w �} �} n� � � �w �w �� �� �� �� �} � �w � �w H� �� �} H� �� �� � � �� �w bw @P��g� *v �} x �� H� �� 0 ɖ �� �� :� f �� �� �� � �� P �w � �y l �� { $ $| � �w �w �w n� n� �� X �w �w �w ɖ �} �} �} �} � � � �e �j � � � � �j � � � � � � � � � ���� 2D Truss Solution via Matlab (Draft 2 April 24, 2006) Introduction A two bay symmetrical truss with cross diagonals in each bay is loaded at the center bottom node with a vwertical force.

Fiqh Council Of North America Calendar, How To Pronounce Broaden, Improper Fraction Clipart, Soft Croutons To Buy, Nebraska Safety Council, Rolling Mean In R, Best Irish Gin 2020, Cupcake Flavor Ideas,

Leave a Reply

Your email address will not be published. Required fields are marked *